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This solution can be represented by a series in powers of $11 converging uniformly and 
absolutely for small 1 E 1 < I?~. 

The proof of these theorems is not included here. It is only noted that the procedure 
is similar to that used in [S, 71. 

The above theorems imply that the series for @ (0, E) and t (0, E) converge uni- 
formly and absolutely. Convergence of the series in powers of E aud ~‘/a (in the case of 
v = vl) for integrand functions in (1.4) follows from the general theorems of analysis 

on substitution of one series into the other. The general theorems of analysis also yield 

the proof of convergence of the series (4.1). (4.2) and (4.3). 
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The principal assumptions in the construction of a general multivelocity model of a 
continuous multiphase medium are examined and the fundamental equations (for mass, 

momentum and energy) of mechanics are obtained for each phase in the heterogeneous 
mixture. On the basis of these equations a closed system is proposed which describes the 
motion of a dispersed mixture of two compressible phases in the presence of phase chan- 
ges. Energy transitions in phase transformations are analyzed. The fundamental relation- 

ships on the surface of the discontinuity are derived. Proceeding from the assumption of 
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additivity of the internal energy of the mixture according to masses of components and 
from the assumption of local equilibrium within the limits of a phase, thermodynamic 
questions of a heterogeneous mixture are analyzed. In particular, an explicit expression 
is obtained for the dissipation function, 

The basic ideas of utilizing interpenetrating multivelocity continua in the mechanics 

of mixtures were worked out in lJ.1 and @I. Questions of derivation of corresponding 
equations by means of averaging methods were examined in [S&where the earlier litera- 

ture is also mentioned. It should be noted that some equations of multivelocity continua 
were also contained in [4, 51. 

It is necessary f6] to distinguish homogeneous or multi~om~nent (*) mixtures (solu- 
tions, alloys, mixture of gases) from heterogeneous or multiphase mixtures (emulsions, 

suspensions, gaseous suspensions, soil saturated with water, mixtures of powders. etc. ). In 
the homogeneous mixture each constituent (component) can be considered as occupying 
the entire volume of the mixture 

while each constituent (phase) in the heterogeneous mixture occupies only part of the 

volume of the mixture, so that 

v, -t- v, i- I.. -I- v, = v 

A neglect of this situation and also the introduction of a temperature concept of the 

mixture in the case where the temperatures of the constituents are not equal, lead the 

authors of p-91 to formal theories which are not supported by physical reality, at least 

in the case of heterogeneous media [IO]. 

The results obtained in this work are generalizations of [II] and pl2], where an analog- 
ous mixture was examined, however, for the case where one of the phases is incompres- 

sible [in [1X] in the absence of phase transitions). As an example for the case where it 
is necessary to take into account the compressibility of both phases, we point out the flow 

of dispersed vapor-liquid mixtures at pressures and temperatures close to the crirical 
values. Another area of application of results presented, is the investigation of propaga- 

tion of strong shock waves in condensed heterogeneous mixtures, 
We note the work [13] where a model of two compressible phases with application to 

water saturated soil but in the absence of phase transitions was examined. We also note 

the wrork II.41 where a single-velocity formulation was used and where equations of mo- 
tion were obtained which are applicable to a two-phase solid body taking into consider- 
ation phase transitions. 

1, Fundrmentaf arsumptfone, The motion of the multiphase mixture will 
be examined under the following fundamental assumption. The distances over which 

the flow parameters change substantially (outside the surface of discontinuity) are much 
greater than the characteristic dimensions of inhomogeneities or inclusions. This per- 
mits to describe the multiphase mixture, just as the homogeneous mixture, in the form 
of a sum total m( with respect to the number of phases) of continua which occupy one 
and the same volume. Then at each point of the volume which is occupied by the mix- 

ture we can introduce average densities &jr, . . . , pm characterizing the mass of the phase 

*) ~~nfortunately, the term “multicomponent mixture” is sometimes used for heteroge- 
neous (multiphase) mixtures. 
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in the unit volume of the mixture. We can introduce velocities v,, v ***t m etc., and 

also write the conservation equations for mass, momentum, and energy for each compo- 
nent. These equations will contain terms which characterize the interaction (due to mass, 

force, and energy) between the components, Further the theories of homogeneous and 

heterogeneous mixtures take separate approaches. The latter utilizes quantities which 

characterize the parts of the volume of the mixture CL~ (i = 1, . . . . m) which are 
occupied by each phase or-t . . . $-a, = 1 (%>O) (W 

In this manner, in addition to the average densities pi, the true densities of matter in 

phases pi*( mass of ith phase per unit volume of ith phase) are determined 

pi0 Z Pi i% (1.2) 
The mechanics of heterogeneous media must take into account the fact that the com- 

ponents in the mixture are present in the form of macroscopic (with respect to molecular 

dimensions) inclusions or a medium which surrounds these inclusions so that many mech- 

anical and thermodynamic properties of the i th phase (i = 2, . . ., m) do not depend 
directly on the presence of other phases. However, the deformation of each phase which 

determines the state and the reaction forces of the phase is determined not only by the 

displacement of the external boundaries (the velocity field vi) of the phase, but also by 

the displacement of interphase surfaces within the selected volume. 
In the general case it is necessary for each component to examine not only the exter- 

nal tensor of deformation velocities 

but also an. entire set (m - 1 for each phase) of certain tensors (8ijkr, 5 = 1, . . . , m, 
j # i) which take into account the displacement of matter of the i th phase on the 

surfaces of phase separation so that the true velocity of phase deformation is deter- 
mined by the tensor 

ei 
ok1 = Pikl + i &jkl (1.4) 

j=l,j#i 
The determination of tensors 8ij is each time connected with the application of con- 

ditions of simultaneous motion and deformation of phases, and with conditions which 

take into account the structure of components (the shape and the size of inclusions, their 
disuibution, etc.). In those cases where the effects of strength do not have any signifi- 
cance (gaseous suspensions, liquid with bubbles or particles, solid bodies under conditions 

of very high pressures), the conditions of simultaneous motion are substantially simpler 
than in the general case. In essence, they reduce to giving equations which determine 

the volume content of phases CQ. We note that the most commonly encountered equa- 

tion of this type is the equation of pressure equality of phases. 

2. Integral equbtion8. Let us examine a volume V which is fixed in some 
inertial system of coordinates and bounded by the surface s. The equations for conser- 
vation of mass for the first and second phases inside the volume V have the form 

c 
apldV= -1 

ir a’ 
p17.1ndS j- \ (J2r- J,,f dV, PI = P,B% (2.1) 

‘s i- 
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Here J1, and J,, are “observable” macroscopic velocities of phase transformation 
each of which is nonnegative ao that Jij gives only the rate of formation (in the oppo- 
site case Jij = 0) of the i tb phase at the expense of the i th phase per unit volume 

and time. This means that, by convention, phase transitions are broken up into two reac- 

tions (each of which from the kinetic view point has a forward and reverse reaction). 

This is related to the fact that the two possible resulting directions of phase transforma- 
tions 1 -+ 2 and 2 + 1 lead to different changes in momentum and energy of the 

individual phase. These changes cannot be taken into account through a change in sign 

of the reaction rate (which is sufficient when the equations of momentum and energy are 
written for the entire mixture (see below)). Combining the integral equations (2. l), we 
have the equation of conservation of mass of the entire mixtlue 

The equations of conservation of momentum of each phase separately have the fol- 
lowing form: 

s v $ (~1~1) dV = - \ orvlulndS + \ o,“dS + 
b j: 

+ 1 rz&’ + LV 
V 

21~21- Jnv,,) dV 4 1 Q&V 

(2.3) 

Here rsl is the volume force related to the unit volume of the mixture and resulting 
from the interaction between phases within the volume V due to forces of friction, pres- 

sure, coupling between phases, the effect of associated mass, etc. The fourth terms in 

the right sides of (2.3) represent the change of momentum of the corresponding phase 
as a result of phase transformations. For example, the transition 2 --+ 1 results in the 

momentum J,.v,, transferring from the second phase into the first phase. The transi- 

tion 1 -+ 2 corresponds to the transfer of momentum J12v12 from the first phase to the 

second phase. This means that VI2 and vslare velocities of masses which suffer phase 

transitions corresponding to 1 --f 2 and 2 --+ 1. Furthermore, F, and F2 are external 
mass forces which act on the first and second phases. The second terms in the right 

sides of (2.3) are connected with the interaction of the medium, which is external with 

respect to the surface S , with the corresponding phase. This interaction is characterized 

by the tensors of surface forces ojkr (i = 1, 2) which can be represented as 

ui 
h-l = c+$OkI + ajoii*hl (2.4) 

here UiokL is the actual stress tensor connected with the action of surface forces on the 
ith phase from the same rth phase on the external boundaries of the selected volume 
of the mixture. The tensor oji*” is connected with interphase surface forces acting on 
the i th phase from the j th phase on the same external boundaries. 

Combining Eqs. (2.3), we have the equation of conservation of momentum for the 
entire mixture 
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\ -& (1’1~1 + pzv,) dV = - \ (pl\.yln -+ p2v2d') dS -t 
b 

+ 1 (CQ~ -I- CQ~) dS :- s (plFl + p,F,) dL' (2.5) 
s V 

The energy of the mixture is composed of the internal and kinetic energies of the 
components. In this connection we will consider each phase as locally homogeneous. 
That is. in each elementary volume of the mixture the substance of each phase which 

also contains the inclusions (drops, particles, bubbles, etc.) is taken as homogeneous 
throughout to the very interface of phases. For this reason the energy of each component 

is considered proporrional to its mass. This is equivalent to the statement that singular- 

ities of the surface layer of material which forms the boundaries of phase separation 
and which has a thickness of the order of the radius of molecular interactions (-IO-!’ m), 

are not taken into account further. 

For this it is necessary that the dimensions of the inclusions be many times greater 
than the thickness of this layer. Furthermore, only that part of kinetic energy will 

be taken into account which is connected with the macroscopic motion of phases with 

velocities bi. In fact there are also small-scale flows (with characteristic linear dimen- 

sions which have the same order of magnitude as the inhomogeneities of the mixture, 

Examples of such flows are pulsating motions around bubbles, reverse flows carrying the 
fluids near the inclusions). In the existing theories of interpenetrating motion the kine- 
tic energy of such flows is not taken into account. In this manner the case is examined 
where with homogeneous representation of the energy of phases, the energy of rhe mix- 
ture is additive with respect to the mass of phases. A separate paper by the author will 
be devoted to the problem of consideration of surface effects within the framework of 

concepts of Gibbs in the fluid mechanics of a mixture. In this paper the kinetic energy 
of the small-scale motion of phases will also be considered. 

Let us now write the energy equations separately for the first and second phases within 
the volume v 

Here ui is the internal energy of the ith phase. The second and third terms in the 
right sides of (2.6) correspond to the work of external surface forces acting on the i th 
phase on the surface S, characterized by vectors Ci, and to the influx of heat from out- 

side to.rhe ith phase through the surface S. The influx of heat is characterized by 
vectors qi. The fourth terms represent the work of external mass forces and also the 
strength of external heat sources located inside the volume V. The last terms in the 
right side describe the energy exchange related to the unit volume of mixture and unit 
time within the volume V between the first and second phases due to heat exchange 
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(%I), the work of interaction forces (forces of friction, pressure, cohesion, etc.) between 
phases (weI) , and phase transitions. The transition 3 - 1 leads to the situation where 
the energy of the first phase increases by the quantity J,, (u& l,i- vz12) at the expense 
of the second phase. The transition 1 -+ 2 leads to the situation where the energy of 

the second phase increases by the quantity J12 (~1.~ + 1j~ur~2) at the expense of the first 
phase. That is, u12 and uSI are internal energies of masses which transfer from state 1 

into state 2 and from state 2 to state 1. 
Combining Eqs. (‘2.6), we obtain the energy conservation equation of the mixture inside 

the volume V. This energy can change only as a result of the action of externai sources 

3. Differential aquation$, IJtilizing the formula of Gauss-Ostrogradskii in 
the integral equations and introducing the operator of substantive derivative for each 
phase (here and subsequently summation is performed only over the superscripts which 

are related to projections on coordinate axes) 

we obtain the differential equations of conservation of mass, momentum and energy of 

each phase for continuous motion 

(3.2} 

We note that equations of conservation of moments of n~ornenturll in the case of 
absence of internal moments in each phase and in the absence of distributed couples in 

the mass and on the surface lead to symmetry of tensors oih-r in analogy to the classical 

case. 
From (2. A), (2.5) and (2.7) in analogy to (3. a), or combining the corresponding equa- 

tions of (3.2), we can obtain equations for conservation of mass, momentum and energy 
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x u1- us + ( ~2t_pj-v(ql + qz) + ~1 (F,v, + Qd + PZ (W, + 9s) 
From a comparison of (3.8) and (3.3) it is evident that in the directional relationship 

(2 --t 1 or 1 --f 2) of the resulting phase transformation in a given point, the force and 
energy interaction on an individual phase cannot be taken into account by a change in 

Ihe sign of the reaction rate, because in the general case vls # vZlr u12 + uzl and 

the effects in the right sides of Eqs. (3.2), which depend on J,, and J,, are ditterent. 
At the same time for the entire mixture the force and energy effects can be taken into 
account through a change in sign in the rate of transition because this effect enters into 

Eq. (3.3) through the difference J,, - J,1. 
From the second relationship (3.2) we find the equation of kinetic energy for an indi- 

vidual phase (3.4) 
@, 4 Viz -- 

( 1 ’ dt 2 
= Viv~OiL + rjivi + Jji (\‘jivi - vi’) - Jij (vijfi - vi”) + PiFivi 

the equation for the kinetic energy of the mixture 

p1 $ ($1 -t pz J$ (f$) = v,v%,k _r- V,Vk02k + r12 (VT - vl) :- 

(3.5) 

and the equation for the internal energy of the individual phase 

dilLi 
pi 7 = VCi 

k k, - V~V bi + wji - rjivi f qji + Jji (zji - [Ai) - Jij (Fj - Ud f 

+ ‘/zJji (vji - vi)” - l/zJif (Vij - Vi)’ - Vqi + PiQi (3.6) 

This equation is obtained from formally balanced relationships and its direct applica- 
tion to a concrete case is connected with considerable difficulties. In the absence of 

phase transitions the application to a concrete case was carried out in fl3] with the help 
of some additional considerations. It w’ill be shown below that in the general case it is 

better and clearer to proceed from the analogous relationship in the form of the equation 
of heat influx of the ith phase 

4ui _ 
Pi dt - piAi - JjiXi ji - JijXi,ij + qji - vqi + PiQi (3.7) 

Here A i represents the work of internal forces flS] in the unit mass of the i th phase 

Er unit of time. The remaining terms represent the influx of heat. Here Xi,ji and Ji,ij 

are the heat fluxes from the ith phase to the material which undergoes the transforma- 

tion j + i and i t j , respectively. The heat fluxes are referred to the masses which 
undergo these transitions. 

4. Evaluation of mechanical and thermodynamic propertlel of 
phrrs8. Concrete application of the model to a two-phase continuous medium natu- 
rally requires the evaluation of mechanical and thermodynamic properties of the phases. 
Taking into account the material presented in Sect. 1, it will be assumed that the pro- 
perties of each phase in the mixture are determined by the same relationships which 
apply assuming that this phase occupies the entire volume under the same conditions. 
In this connection the deformation enters into these relationships through the actual 
tensor of deformation or through the actual velocities of deformation. That is, knowing 



the properties of each phase, we have the equation for the actual stress tensor 
-;‘fii’ ._ ,;yh’/ 1 ,,py ,p. T,. Xi’* , Xi”) 3 (4.1) 

This tensor enters into the expression of the general tensor of surface forces of the i th 
phase (2.4). Here xi’, . . . . Xi” are physical-chemical parameters of the i th phase. 

Further we adopt the hypothesis of local equilibrium within the boundaries of the 
phase. This makes it possible for e.ach phase TO introduce its own temperature (T,. . . . . 

TA and other thermodynamic f~ctions(erlcropy, enthalpy, internal energy and others) 
corresponding to the substance of the phase at its temperature 7’,, deformation s?“Ki and 

other physical-chemical parameters. For example 

II- _ II’ (E.““, 7’,, x,1, . . . . %i~)) 2% 
(“1.2) 

The second law of thermodynamics for the ilh phase in this case has the form 

T,d,s, = d,$Yj”) -k d,cfi’, d&’ ;a 0 (4.3) 

where si is the specific entropy of the i th phase, dlqy) is the external influx of heat 
and d,qi’ is the so-called uncompensated heat, all taken per unit mass of the ith phase. 

In this case rfigi’ is determined by rhe properties of the ith phase only. 

In this manner the problem of multiphase motion in the case where the physical and 
mechanical properties of each phase are known, is reduced to the development of con- 
ditions for simultaneous motion and deformation, i. e. to the determination of fiJt! and 

other terms characterizing the interaction of phases 

(a$‘, Jji, Jij, rij IT - Pji, “ij. ‘ji, ~ij, Uji, ilij ~= - ‘iii, ‘Uij 7 - I~‘ji) 

6, Dlrperted mixcurer of two compre#tible phrre,, Let usexamine 
a heterogeneous medium consisting of a mixture of two compressible fluids in each of 

which effects of strength are not present. The second phase is present in the form of 
separate inclusions of uniform size (particles, drops, bubbles). Direct interactions (for 
example collisions) between these can be neglected. The first phase is the supporting 
medium which is described through the model of a viscous fluid. In this case it can usu- 

ally be assumed that h-1 :1 a1 - J,Q”’ + rlh‘E, a,!” z 0 (5.1) 

where ?jlCE is the Kronecker symbol, p1 is the pressure and ‘cLiC6 is rhe viscosiry tensor of 

the first pilase. For this tensor the Navier-Stokes relationship determined by the external 

tensor of deformation velocities (1.3) is assumed 

Quip Z.1 &“Ov, + +,*/Q (5.2) 

The effect of displacements on interphase boundaries, on which :h~ actual velocity of 
deformation of the first phase (1.4) also depends, is taken into account through correc- 
tions (of the Einstein type) in the coefficients of viscosity h,* and plf These corrections 
take into account not only the properties of the supporting medium, but also the proper- 
ties of inclusions Q6 f. In concentrated suspensions it is sometimes necessary to examine 
also the nonzero (because of random motion of particles) vaiues p7, 181 of the stress 
tensor oziC’. 

In analogy to (5.1) and (5.2) it i,s possible in the absence of radiant heat transfer to 
take the heat transfer relationstlip within the supporting phase in the form 

‘I~ :- - /r,*VT,, q2: 0 (5.3) 
- 

Taking into account the hypothesis of local equilibrium within the boundaries of the 
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phase (Sect. 4) and assuming that the phases represent two-parameter media [15], i. e. 
the thermodynamic functions of each medium depend only on two thermodynamic para- 

meters of state (for example, on the actual density pi0 and temperature Ti or the pres- 
sure piand the temperature T,), we have 

ui = ui (PiO,Ti), pi = pi (Pi’, T,), si = si (pi’, Ti) (5.4) 

In this case the Gibbs relationship is valid 

(5.5) 

For many problems where the characteristic time of the macroscopic process under 

examination is much greater than the characteristic time of establishment of interphase 

pressure equilibrium, we can (when the effects of surface tension are small (Sect. 2) ) 
take advantage of the “single pressure” model, i.e. 

pi (pi”, T,) = ~2 (~20, T2) = P 
(5.6) 

In this case this represents the condition for simultaneous deformation of phases. This 

condition controls the volume sizes of phases. In many cases we can use as such a con- 

dition the incompressibility of one of the phases. In the case of nonequilibrium with 
respect to pressure between the phases, it is necessary to specify the kinetic equation 
which relates pi and p2 (of the type of the equation of lamb for a bubble) and to take 

into account in this connection the kinetic energy of pulsating motion of phases. This 

energy is converted into compression energy and back. The process can be accompanied 
by dissipation because of viscosity. 

The force of interaction hetween the supporting medium and the inclusions is repre- 
sented in the form rls = - aZT7 pi + f,, (5.7) 

Here the first term is related to interactions of the pressure field with the inclusions 

(Archimedes force). The second term is related to velocity nonequilibrium between 
phases (difference between viand v2) which in turn in this case is due to three effects 

fia = fj + f,, + f, (5.8) 

Here ff , The friction force (Stokes force), which is due to viscous forces in the inter- 
action between phases, is determined by the difference in velocities (slip) vl-vZ, the 
size, the quantity and the shape of inclusions, and also the physical properties of phases. 

Further f, is the force connected with the influence “of associated masses” and arising 

hecause of accelerated motion of the inclusion with respect to the supporting phase when 
disturbances arise in the latter over distances of the order of dimensions of the inclusions. 

It is these small-scale disturbances which result in an additional pressure fo :e which is 
not taken into account by the term -ua,%pp,. Finally. f, is the force of aacl tional influ- 
ence on the inclusions because of gradients in the average velocity field ci (he support- 

ing phase (hlagnus or Zhukovskii force). For the forces indicated in (5.6) ..e following 
relationships can be written : 

f, = u2pi0 K (v, - vz), K = K (a& I v1- vz I, PI, pz, Q:. ) 

dz 
f, = azpl”X’ dt (v1 - Vl), f, = aap1”x” (Vl - VZ) x rot VI (5.9) 

The influence of particle shape, their interaction and other refinements in the expres- 

sions of forces ff. fm, r f can be taken into account in the coefficients K, x’ and x”. 

The intensity of phase interaction strongly depends on the characteristic dimension 
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of inclusions a and their number n in the unit volume of mixture, so that 

a2 = nna” (5.10) 

Here q is a nondimensional coefficient which is determined by the shape of the par- 
ticles (n = 4n / 3 for spherical particles of radius a). The quantity R can change due 
to convection and also as a result of the processes of fracture, agglomeration and forma- 

tion of new particles. This is characterized by the quantity $ in the equation for the 

number of particles 
$- + v (nvz) =? 9 (5.12) 

In the absence of fracture, agglomeration and formation of new particles ($ = 0) and 

under the condition of incompressibility of the mass of inclusions (pZ” = const) , Eq.(5.11) 
is a consequence of the equation for the mass of the second phase for the condition 
a = const. 

6. Energy trrnrltionr in phrle tr&nBformrtion8. In order to represent 
more concretely the exchange of energy between phases because of phase transformations, 

let us examine the elementary volume dI’ = dvr + dvz of the medium at rest 

(Fig. 1) in the vicinity of the interphase boundary S at the instants t and t $- dt when 
the boundary 2 is displaced to the position Z as a result of the transition 2 -+ 1. In 

this process the mass of the second phase 

.r,,dV dt (J,,dV dt< Pi”dVi -z f’idV ) 

which is located at the instant t between the sur- 

faces Z and x,, moves (expands) to the position 

between the surfaces E ’ and Z i. 

For simplicity we will not examine the interaction 
between the selected volume dV and the external 

medium. It will also be assumed that the phases are 

homogeneous throughout to the very interphase bound- 

Fig. 1 ary. 
Taking into accunt (5.4), we write the equations 

of heat influx for three fixed masses: 
1) Mass of material which at the instant t was in the form of the first phase (above 

the surface 2) . 
2) Mass of material which at the instant t $ & was in theform of the second 

phase (under the surface Z ‘) . 
3) Mass of material which has undergone the transition 2 --+ 1 (at the instant t 

it occupied the volume between 2 and 2 s). 
Then we have 

p&Vdu, = qzldt - J,,dV dt r1,21 + J,, dV dt x,pA6 
(~2 dV -J,, dV dt) du, = q13 dt - J,,dVdt z2,21 + J,,dV dt xgA6 

J,, dV dt (v + du, - us) = Jzl dV dt (+I + x2,21) - J21 dV dt pA6 
(x1 + ‘x2 = 1, A.6 = 1 / p10 - 1 / p2’) (6.1) 

Here the last terms correspond to the work of internal forces during the change in 
volume. With accuracy to small terms of higher order we obtain from (6.1) 
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~1% = qz& - J21xdt + J,,wA* 
P2dU2 = - q&t - J21xdt + J,,x,pA+ 

Ul - ~2 = X1,21 t ~2,21 - PA+ 
(6.2) 

Analogous relationships can be obtained if the transition 1 -+ 2 is examined. Intro- 

ducing enthalpies of phases ii = Ui + piIpiO, it follows from the last equation of 

(6.2) x1721 + x2,2l = i, - i,, x1,12 +x 2r12 = i2 - 11 (6.3) 

Generalizing the obtained expressions to the case of the transition 1 + 2, the first 
two Eqs. (6.2) can be represented in the form 

d (p,u,)/dt = q21 4- J,, (~1 - 21721) - J,, (~1 + X1,12) -t- 

+ (J21- J12) XIPA* 
d (p,u,)/dt = -421 - Jzl(U2 + 52.21) + J,, (4 - ~2.12) + (J,, - Jlz) x2PA* 

(x1+x2= 1, A6= l/p,“--l/p,“) (6.4) 

In this manner in the transition 2 --f 1 the internal energy of the second phase 

decreases by the quantity Jzl (Up + ~2,~~). The Jsl (ul - x1,& part of this energy 
is transformed into the internal energy of the first phase. The remaining part pA6 is 

distributed among the phases (in proportion to xi) in the form of work of internal forces. 
. . 

As a result the quantities uis and uslcan be written in the form 

U 12 = u2 - X2,12 + x2p A6 = ul + x1.12 - ~,PAO 

U 21 = u2 + x2,21 - x~A6 = u1 - x1,21 4 xlphfi (6.5) 

For further progress it is necessary to know which part of energy i, - i, is expended 
or absorbed separately by the first and second phases in the transformation 2 3 1 (or 
1 -+ 2) of some mass of the second (first) phase, i. e. it is necessary to specify the rela- 

tionships for uisand u,,(see (3.6)) or xl,12 and ~s,~~. Following the development in 
DZ], we take Xi,ij = Cjs - bi VW 

here the index s refers to the state of saturation 

ii, = ij (P, TS (P)) (6.7) 

and T,is the temperature for the equilibrium transition 1 2 2. Taking into account 
(6.3), it follows from (6.6) that 

2 24 = h - i2, X1,21 = il - ilsr X2r12 = i, - i28, X1,12 = i2, - i, (6.8) 

Relationships (6.6) or (6.8) actually postulate the fact that in the transformation i -+ j 

the i th component directly expends or absorbs the energy which is necessary at the ambi- 
ent pressure in order to bring the mass which is undergoing transition to the state which 

has the form of the i th phase under consitions of saturation. The remaining energy which 
is necessary to take this mass from the saturated state to the existing state of the 1 th 

phase is expended (absorbed) by the jth phase itself. 
The quantity 91s = - q21, which describes the intensity of the heat transfer between 

the components due to inequality in their temperatures, in many cases (when the radiant 
heat transfer is insignificant) can be assumed to be proportional to the temperature dif- 

ference between the phases 
qrs = B (T, - T2) (6.9) 

here @ depends on the shape, the size of inclusions, the physical properties and the rela- 
tive motion of the phases. 
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7. The complete system of equation8 of motion for the dispersed 
mixture, Further development of a concrete model of rnotion of a liquid or gas Inix- 

ture with foreign inclusions (Sect. 5) is tied to explicit determinations of the capacity of 

internal forces for work in the unit mass of the i th phase/! i (see (3.7)). This capacity, 

generally speaking, is represented in the form (summation over superscripts) 

(7.11 

The second term gives the dissipated energy in the ith phase due to internal viscous 

forces which arise because of gradients in the velocity field vi and also because of inter- 

action with the other phase. Since the direct determination of the actual tensor of delor- 

mation velocities is difficult in this case, it is appropriate to take advantage of some 

assumptions which result from the analysis of the motion of inclusions in the supporting 

flow of the medium and an analysis of (3.6). For example 

PiAi = %-$_ ‘$ 
1 

+ Vifji (Vj - Vi) _/_ QIPiih’l _j_ Jji (Vji y- “i)’ _ Jij @ij ;w 

- Y1 + Ya = 1 (7.21 

Coefficients vi, first introduced on the basis of formal considerations in Cl!?], show the 

fraction of kinetic energy of the mixture which can be dissipated as a result of interac- 

tion between components and which transfers directly into the internal energy of the i th 

phase. 

We note in connection with this that components of the interphase force rlz (see (5.7)- 

-(5. 9)), the force connected with the effect of associated masses f;*, the Magnus force 

fr, and also the Archimedean force lead directly to a transfer of a part of the kinetic 

energy of macroscopic motion not into internal (thermal) energy phases, but into the 

kinetic enerby of small-scale (see note before (2.6)) flows within and near inclusions. 

As we pointed out earlier, the latter energy is not taken into account in existing theories 

of interpenetrating motion. In (7.2) f, and f, enter as dissipative forces. 

In many cases, where it is possible to neglect dislocation deformations of inclusions 

(particles, drops, bubbles) with respect to the supporting phase, the following relationships 

are valid : Y2 = 0, Y1 = 1, v21 = T12 = v1 (7.3) 
In this manner, taking into account (3.7). (S. 1). (5.2). (S. S), (5.6). (6. 8) and (7.2), the 

system of equations of two-phase motion (3.2) for dispersed heterogeneous mixtures as 

indicated in Sect. 5, takes the form 

p, ‘$ = - a,vp + vkqk - f,, + J,, (vzl - vL) - J,, (\-!? - vl) -F- p,F, 
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p2 ‘$ = 2 ‘g + v,f,, ( v1 _ v2) - J,, (?!$-d’ + J,, @I2 ; v2)2 _ 

- J,l (4s - 4) + J,, (izs - 4 -!- qlz + ~eQ2 

Pl (ho, T,) - ~2 (~20, Td = P (7.4) 

(011 + a‘2 = 1, PI0 = Pl / al, PzO = P-2 / q, Yl + y, = 1, a3 = a2 I rl4 

Relationships (5.1)-(5.4) (or their generalizations) characterizing the physical-chemi- 
cal properties of phases, relationships (or their generalizations) of the type (5.7)-( 5.9). 
(6.9). and (7.3) describing the interaction of phases, together with kinetic equations for 

‘$, J,, and J,r with specified external influences (F,, F,, Q1, Q2) close the system 

of equations (7.4) in the region of continuous flow. 

From (7.4) we can obtain equations of momentum and energy of each phase in the 

form (3.2), but in a more explicit representation 

pi “;l’li - $oi*‘c + ‘ji * -t Jji (‘ji - z V.) - Jij (Vij - ~ij C PiFi (7.5) 

pi & (I,.i -+ l.i”’ - :! ) _ v’$-$+vi- pa2 + fji\‘i + Yfji(Vj - Vi) + 

+ Jji ! 
ii, - ei -j- 

Dji3 - *:y 
2 ) 

_ Jij (ijs - q+ %L’l’i) $qji -vqi f 

+ pi (Fivi + 

*kl___ a,@ + zp, kl 
52”kl = - a,ps , r12 * 61 -- = - rzl* = f12 + pva2 

(i = 1,‘; i #j) 

Qi) 

This system corresponds to interpenetrating motion of two interacting continuous me- 
dia in which the reduced tensors of surface forces CJ~*~~ and oa*ltr, the work of these 

forces, the reduced forces of interaction rrs* and other terms which describe the exchange 
of mass. momentum, and energy have been formally determined. 

Taking into account (7.5) we can write in a more explicit form the integral equations 
for the mixture (2.5) and (2.7) which are needed in the derivation of relationships on 

the surface of the discontinuity 

+ i (ales + ~2*‘? dS t 5 (P~FI + PDF,) dV 
S V 

f pz I,,, -t b+) I:2n] As + 5 (%*nV1 + a2**v2) CL.3 - 5 (q1* + q29dS ?- 

+ C [PI @‘iv, + QJ + ~2 (F2~2 -t Qdl dV 

(J *kZ _ J1 -- a,pbk’ f Tlkr, o~*“~ = - a2pSk’) (7.6) 

8. Condition8 on the 8urfrcac of dl8continuity. In the flow ofa 
heterogeneous mixture, regions can arise (shock waves, wall layer, contact surfaces) in 
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which the parameters of the medium change substantially over distances of the order of 

dimensions of the inclusions or smaller (from the point of view of the continuous medium 

these distances are equal to zero). In these regions the model of a conrinuous heteroge- 

neous medium and the differential equations (3.2) or (7.4), which are based on this model, 

are meaningless. Therefore, as it is usually done, it is necessary to introduce into the ana- 

lysis surfaces of discontinuities in flow parameters. On both sides of these surfaces the 

equations of ConTinuous motion are fulfilled. The basic conditions on the surface of dis- 

continuity X are obtained, in a system of coordinates connected with this surface, pro- 

ceeding from integral equations of Sect. 2, which are applied to a small cylindrical volume 

at rest with respect to Z and with bases parallel to C located on opposite sides of it. In 

this connection it will be assumed that processes of heat and mass transfer on these sur- 

faces do not have time to occur. We omit the usual calculations for such cases [I:)], and 

obtain from (2.1) and (7.6) 
([,,/ ,I()+ = (:‘1’:,‘1)- L= ,I, ([JZl.Z”)’ = ([J*(.*f’) = 12 

/.I [VI] +;.2 [V2] -~I- [Q] + [o;‘+ 0 (8.1) 

11 1 it, -+ l;‘?rL’) J + ;.; [IL:: + ‘:‘.‘r.“L I + [c+,] $- p,;“v~l -t- [ ‘1171 I ‘- 142” J = 0 

(I 1 = ( 1’ - ( )-) 

llere the superscripts plus and minus refer to conditions on opposite sides of the surface 

of discontinuity. The symbols n and 5 are the normal and tangential directions to the 

surface 2. In order to close system (8. l), i.e. to make iT possible to determine all para- 

meters of flow on one side of X from parameters on the other side. it is necessary to use 

data on physical-mechanical properties of phases and data on their mutual interactions 

in the narrow regions of interest. 

For heterogeneous systems indicated in Sect. 5, taking into account expressions (7.6) 

for reduced tensors fly’, the expressions (8.1) assume the following form if we neglect 

effects of viscosity and thermal conductivity outside of the surface of discontinuity : 

Jo lrz:] -1. j? [cr,ll + Ipl =_ 0, jl [ol’]+i2 [u,] : 0 
jl [i, -I- ‘/&] + jz [iz -+ ‘/‘&I -: 0 (8.2) 

One of possible additional relationships was obtained in PO] through the examination of 

the limit for a sequence of continuous solutions which tend to approach the discontinuous 

one. As a result the following expression is valid instead of the third equation of (8.2) 

,j, [iI -/- 1/“Ju,2] := 0, j3 [ i.J -I- ‘/,ug] -= 0 (8.3) 

Together with equations of state of phases (5.4) and Eq. (5.6) (equilibrium of phases 

with respect to pressure) it is necessary to utilize relationships which characterize the 

exchange of momentum between components in the jump, in order to close the system 

of equations (8.2) and (8.3). In [ 111 for the case of gas-incompressible particles mix- 

ture, the following relations are used : 

l/z [v,"] -+ [p] / pz" = u, jl [ul'] := jz [L3.1'] = 0 (8.4) 

Furthermore, a classification of discontinuities was made. 

9. Thermodynamic analynfa. Generation of entropy. Proceeding 

from the assumption of additivity of the internal energy of the mixture with respect to 

masses of components (Sect. 2) and the assumption of local equilibrium within the hound- 

aries of a phase, we can introduce a function of specific internal energy for the rnixture 

I,zc (pl”, pZO. T,. T,, u) = p,u, (pl”. T,) + p+:: (o.z”! 7’2) (!).I) 
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and an analogous specific entropy of the mixture 

PSfP I*, r&3*, T,, T,, 4 = PI% @X0, T,) --t I’2S2 (P:, T?f tJ.2) 

In this connection the introduction of the concept of temperature 7’ for the mixture 
in the case where 2’1 + 21?, as it was done in v, 83, is incorrect because in spite of local 

equilibrium of each phase the mixture will not be locally in equilibrium. Therefore, 

expressions of the type u (p, 7’) and s (o, T) for heterogeneous mixtures where 7’1 # T* 

are devoid of meaning. For example, it is immediately evident that this leads either to 
the neglect of some degrees of freedom of the behavior of the mixture, or it requires 

IJ] for T to be regarded as a functional which is determined by the history of the process. 
We obtain the dissipation function for the medium described by Eqs.(7.4) or (7.5). 

i.e. the function which gives the generation of entropy‘of the mixture due to internal 
processes for a fixed mass of the medium. We follow pl] and determine the substantive 

derivative for any function (for example s) which is additive with respect to masses of 

components. For the volume T/’ which was examined in Sect.2 we have 

Here the last term gives the change in s which is not related to mass transfer. Chang- 

ing over to the differential form and utilizing (9.2) and the equations of conservation 
of mass of each phase (3.2), we obtain for the case m = 2 

Actually (9.3) or (9.4) is the determination of the operator d / dt for any function 
which is additive with respect to masses entering into the mixture of phases, 

The condition of local equilibrium within the boundaries of each phase leads to the 
Gibbs relationship (5.5) for the mass of each phase. Taking into account (1.2) and (5.6) 
this relationship can be presented in the form 

d.s. dt”i cliPi diPi 
PiTi+=Pir-T”--;it 

z 
(9.51 

We note that the requirement of local equilibrium of phases imposes in addition to the 
usual limitations an upper limit on the temperature difference of phases / T1 - T, I. 

In this manner we have from (9.4). (9.5) and (7.4) 

ds PlQl VZQ2 vql 
(9.6) 

“~=~+~--- 
&,,kl 

Tl +--- T1 + fl, (t-1 

+ 412 (\i2 G1 ) + J,, (pl _ Sp + .!!g - !Kg_ -;-- (v212;,v1J2 - 

_ (v21- Vl)a ! i - il 
1 

i,, - iz (VI? - v1)2 
2T2 -i- J,, 

/ i 
sq _ s1 _-. ?s -+ ~ - 

Tl T2 21’1 
+ rn2~VZY~ ‘i 

$ 

The quantity ds / dt can be represented in the form of a sum of two terms 

ds d@ s d!‘) n 

-i$-= di 
---++ (0.7) 

The first term determines the entropy increase of the mixture as a result of influx of 
entropy from outside because of energy exchange with the external medium. The second 
term (always positive) represents the entropy increase due to irreversible internal proces- 

ses within the phase or between phases 
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de) s ;4(21 f’-.--zz--.---L 
dt TI ’ 

dti) s 
P - = s = JTXT +- JTkzXrk' t_ JfXf + J,X, -c J.‘1X21 f- J12X12 

dt 

(9.8) 

The generation of entropy o is as usual represented by the sum of products of therm- 

and thermodynamic fluxes 

J, = ql, Jr&l = Qt J j -= flz, Jq = q12, fz1, J12 (9.10) 

In the presence of finite coupling between thermodynamic forces X and thermodynamic 
fluxes J we can consider the quantity o as a dissipation function of X or J. On the basis 

of (9.8)-( 9. IO) we can for example propose linear relationships between them, special 
cases of which are (5. Z), (5.3), (6.9) and in some cases the first equation of (5.9). 

We introduce the notation 

61 = (TI - I’,) / T,, 0” n= ( T2 - Ts) ,f T, (9.1 if 

In case Of Small deviations of phase temperatures T1 and 7:, from the saturation tem- 
perature r,(p), i.e. when / 8, f < 1, j O2 1 < 1 the expressions for thermodynamic forces 

Xl% and X%I connected with phase transformations simplify. In this case 

iI = & + 1 + C~I T&h, i..: -7 i,, + cpoTs% 

s1 --: s2 + 1 ,’ T, i- c&, ss -= s& + cpzO, f9.i2j 

here I (p) is the heat of transition 2 -+ 1, cpl and cP2 are heat capacities at constant 
pressure of the first and second phases. Taking into account (9.12), it follows from( 9.9) 

that: 10~ (V?l - Vl)? 
x21= ‘s+ ---- 

(V2l - v2)’ (v12 - v# 
‘iT, “T, 

. x12 = -!p 4 
s 

2T 

s 
+. (v122-v2)2 (9.13) 

I 
For the velocities of phase transitions we can present the following linear kinetic equa- 

tions : ./,I =- IAx (X21 > O), J,, = 0 (X,1 < 0) 

Jlz -= L,,XI, (Xl2 > Q .I& =--. 0 (-712 < 0) (0.14) 

(L2l >, 0, f,lZ > 0) 

The following inequalities are always valid : 

J21 ,, 0, Jl, >, 0, J,,.Y,l >, 0, Jdlz > 0 (9.W 

We note that the kinetic equations which were utilized usually have the form 11.5, 227 

.rij = Jjj (IBi / T,) (9.16) 

i. e. they do not take into account dissipation effects due to velocity differences between 
the phases. It follows from (9.13) in the case (7.3) that with other conditions being equal 
these effects accelerate the transfer to the high temperature medium and retard it to the 
low temperature one. 

In an analogous manner many available equations can be generalized to the case of 
a mixture with more than two ~om~nents (m > 2) (a particular case of such a gene- 
ralization is given in p3]). The possible multiparameter character of phases (chemical 
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reactions within the phase, electromagnetic effects, etcJ can also be taken into account. 
In conclusion we mention the monograph p4] just published which gives a detailed 

survey of literature and a derivation for the fundamental equations of the mechanics of 
mixtures for both the elastic and liquid phases without phase transitions. 

BIBLIOGRAPHY 

1. Rakhmatulin, Kh. A., Fundamentals of the 
motions of compressible media. PMM Vol. 20. I@ 

as dynamics of interpenetrating 
-2, 1956. 

2. Truesdell, C., Sulle basi della termomechanica. Rend. Acad. Naz. Lincei, Cl. 
Sci.Fis..mat. e natur., Ser. 8. Vol.22. pp. 33-38.158-166. 1957. 

3. Teletov, S. G, , Problems of hydrodynamics of two-phase mixtures. I. Equations 
of hydrodynamics and energy. Vestn. MGU (Moscow State University) Ser. matem., 
mekhan., astron., fiz. khim., NY2, 1958. 

4. S lezkin. N. A., Differential equations for the motion of pulp. Dokl. Akad. Nauk 
SSSR Vol. 86. W2. 1952. 

5. Barenblatt, G. I., On the motion of suspended particles in a turbulent flow. 
PMM Vo1.17. W3. 1953. 

6. Sedov. L-I... Problems-of Science. M.. “Znanie”. 1966. 
71 Green; A-. E.. an d N a g h d i , P-. M . , A theory of-mixtures. Arch. Rat. Mech. 

and Anal. Vol.24, W4, pp.243-263, 1967. 
8. Muller, I., A thermodynamic theory of mixtures of fluids. Arch. Rat. Mech. 

and Anal. Vol.28, N’l, 1967. 
9. Dunwoody, N: T, and Muller, I., A thermodynamic theo 

cally reacting ideal gases with different temperatures. Arch. Rat. Xi 
of two chemi- 
ech. and Anal. 

Vol.29, N95, 1968. 
10. Ni matulin, R. I., 

8 
On the theory of mixtures of Green and Naghdi, PMTF, W3, 

1 70. 
11. Kraiko,.A. N and Sternin, L. E., Theo 

7 
of flows of a two-velocity medium 

containing solid or liquid particles. PMM Vol.. 9, N’3, 1965. 
12. Nigmatulin, R. I., Equations of hydromechanics and compression waves in a 

two-velocity and two-temperature continuous medium in the presence of phase 
transformations. Izv. Akad. Nauk SSSR, MZhG, N’5, 1967. 

13. Zolotarev, P. P, and Nikolaevskii, V. N. , Thermodynamic analysis of 
unsteady processes in deformable porous media saturated with liquid and gas. 
Collection “Theory and Practice of Oil Production (Annual Volume 1966). M., 
“Nedra”. 1966. 

14. Nigmatulin. R, I., Model of motion and shock waves in two-phase solid bodies 
with phase transitions. PMTF N’l, 1970. 

15. Sedov, L. I., Mechanics of a Continuous Medium. Vol.1, M., “Nat&a”, 1970. 
16. Safrai, V. M., Application of cellular model to the computation of viscosity 

of dispersed systems. PMTF NQl, 1970. 
17. Miasnikov, V. P, , Dynamic equations of motion of two-component systems. 

PMTF N”2, 1967. 
18. Buevich 1u.A On statistical mechanics of particles suspended in a gas stream. 

PMM Voi. 32. Nal: 1968. 
19. Maron, V. 1. and Mehvedev, V. A Derivation of energy equations of 

interpenetrafing motions of gaseous media: Vesm. MGU (Moscow State University) 
Ser.1, Matem. i Mekhan. NPl, 1963. 

20. Nikolaevskii, V. N., Hydrod 
IJ 

namic analysis of adiabatic shock waves in 
hetero eneous mixtures. PMTF -3, 1969. 

21. Nigma ! ulin, R. I., Some relationships of nonequilibrium thermodynamics for 
a two-temperature and two-velocity 
SSSR. MZhG N”;j. 1968. 

gas with phase transitions. Izv. Akad. Nauk 

22. Deich, M. E, and Filippov, G, A., Gas Dynamics of Two-Phase Media, 
M. , “Energiia”, 1968. 

23. Nigmatulin, R. I., Some problems of hydromechanics of two-phase multidis- 
persed media. Izv. Akad. Nauk SSSR. MZhG N’Q, 1968. 

24. Nikolaevskii, V. N., Basniev, K. S., Gorbunov, A. T, and Zotov, 
G. A., Mechanics of Saturated Porous Media. M., “Nedra”, 1970. 

Translated by B. D. 


